

POWER REQUIREMENT FORMULAS

Formula A :

Wattage required for heat-up = <u>Weight of material (lbs) x Specific Heat(*) x Temperature Rise (°F)</u> 3.412 x Heat-up Time (Hours)

*For specific heat and density values, please refer to pages ((X-X))

Formula B :

Wattage losses at operating temperature = Wattage loss/ft²(**) x Area (ft²)

**To find values for wattage losses, refer to the curves shown on page ((X))

Formula C :

Wattage for melting or vaporizing =

Weight of material (lbs) x Heat of fusion or vaporization(BTU/lb) (***) 3.412 x Heat-up Time (Hours)

*** The Specific Heat of a material changes at some temperature due to melting (fusion) or evaporation (vaporation). To calculate wattage, use formula A for the heat needed to rise from initial to the point of change. Then calculate using formula A with the new specific heat from the point of change to the final temperature. Add these two values to formula B and C to calculate the total wattage

Specific Calculations

To Heat Liquids :

Wattage for initial heat up = (A) + (B)/2Wattage for heating added material = (A for new material) + (B)

To Melt Metals :

Wattage for initial heat up =	(A to mel	ting point) + (C to melt) + (A to heat above melting point) + (B)/2
Wattage for heating added mat	erial =	(A to melting point) + (C to melt) + (A to heat above melting point)

For the two calculations above, add the two values and multiply the final wattage by 1.2 to compensate for additional heat losses (Safety Factor)

To Heat Ovens :

Wattage = [(A for air) + (A for material introduced into oven) + (B for external oven losses)]*1.25 (door heat loss)

Forced Air Heating :

Wattage = <u>Ft³/min. x Temperature Rise (°F)</u> 3

www.OEMheaters.com Toll Free: (866) 685-4443 Email: Info@OEMheaters.com

O.E.M. HEATERS TECHNICAL GUIDE

POWER FORMULA EXAMPLE 1

Basic Heating Calculations

A mold is being heated to form rubber parts. Every hour, 100 ounces of rubber is placed into the 10" x 10" x 4" steel mold which is attached between two stainless steel platens measuring $15" \times 15" \times 2"$. Each platen is insulated on it's horizontal surface with 1/2" thick insulation.

The mold must reach an operating temperature of 400°F in one hour from room temperature (70°F).

We first find the specific heat and weight values for each of our materials:

Specific Heat of Steel:	0.12 <u>BTU</u>	Weight of Steel Mold: 10 x 10 x 4 x .284 <u>Lb.</u> = 113.6 x 2pc = 227.2 lbs
	Lb x °F	In ³
Specific Heat of S. Steel:	0.12 <u>BTU</u>	Weight of SS316 Platen: 15 x 15 x 2 x .288 Lb. = 129.6 x 2pc = 259.2 lbs
	Lb x °F	In ³
Specific Heat of Rubber:	0.44 <u>BTU</u>	Weight of Rubber: 100 ounces x 0.0625 = 6.25 lbs.
	Lb x °F	

Formula A : Wattage required for heat-up

To Heat Mold:	227.2 (lbs) x 0.12 (BTU/Lb°F) x 330 (°F)	=	2637 Watts
	3.412 x 1 (hr.)		
To Heat Platens:	259.2 (lbs) x 0.12 (BTU/Lb°F) x 330 (°F)	=	3008 Watts
	3.412 x 1 (hr.)		
To Heat Rubber:	<u>6.25 (lbs) x 0.44 (BTU/Lb°F) x 330 (°F)</u>	=	266 Watts
	3.412 x 1 (hr.)		
Safety Factor:	(2637 + 3008 + 266) x 20%	=	1182 Watts
Total wattage required for heat-up:			7093 Watts

Formula B : Wattage losses at operating temperatures:

Heat Loss from Mold (vertical surfaces):	$\frac{10'' \times 4'' \times 4 + 10'' \times 4'' \times 4}{144 \text{ in}^2/\text{ft}^2}$	=	2.2 ft ² x 350 <u>Watts</u>	=	778 Watts
Heat Loss from Platen (vertical surfaces):	$\frac{15'' \times 2'' \times 4 + 15'' \times 2'' \times 4}{144 \text{ in}^2/\text{ft}^2}$	=	1.7 ft ² x 350 $\frac{Watts}{ft^2}$	=	583 Watts
Heat Loss from Platen (bare horizontal):	$\frac{(15'' \times 15'' \times 2) - (10'' \times 10'' \times 2)}{144 \text{ in}^2/\text{ft}^2}$	=	1.7 ft ² x 250 $\frac{Watts}{ft^2}$	=	434 Watts
Heat Loss from Platen (insul. horizontal):	$\frac{15'' \times 15'' \times 2}{144 \text{ in }^{2}/\text{ft}^{2}}$	=	3.13 ft ² x 100 $\frac{\text{Watts}}{\text{ft}^2}$	=	313 Watts
Safety Factor:	(778 + 583 + 434 + 313) x 20%	=	it.		422 Watts
Total wattage losses at operating temperation	ure:				2530 Watts
Total wattage required for heat-up:					7093 Watts
Total wattage required:					9623 Watts

POWER FORMULA EXAMPLE 2

Melting Calculation

An open top uninsulated steel tank measures 20" x 22" x 18" and weighs 140 lbs. The tank is used to melt 175 pounds of paraffin wax from room temperature (72°F) to 150°F in 3 hours.

We first find the properties of the materials we will be using:

Specific Heat of Steel:	0.12 <u>BTU</u>	Heat of Fusion of Paraffin:	63 <u>BTU</u>
Specific Heat of Solid Paraffin		Way Surface Loss @150°E.	Lb 55 Watts
Specific fleat of Solid Faranni.	Lb °F		ft ²
Specific Heat of Melted Paraffin:	0.71 <u>BTU</u>	Steel Surface Loss @150°F:	70 <u>Watts</u>
	Lb °F		Ft ²
Melting Point of Paraffin:	133 °F	Wax Surface Area: (20" x 22")/	$144 = 3 \text{ ft}^2$
		Tank Surface Area: [(20" + 22") x 18'	$x 2]/144 = 11 \text{ ft}^2$

Formula A : Wattage required for heat-up

To Heat Tank:	140 (lbs) x 0.12 (BTU/Lb°F) x (150-72)(°F)	=	128 Watts
	3.412 x 3 (hrs)		
To Heat Wax:	<u>175 (lbs) x 0.70 (BTU/Lb°F) x (133-72)(°F)</u>	=	730 Watts
	3.412 x 3 (hrs)		
To Heat Melted Wa	ax: <u>175(lbs) x 0.71 (BTU/Lb°F) x (150-133)(°F</u>) =	206 Watts
	3.412 x 3 (hrs)		
Safety Factor:	(128 + 730 + 206) x 20%	=	213 Watts
Total wattage requ	ired for heat-up:	_	1277 Watts

Formula C : Wattage required for melting

Heat of Fusion for Paraffin:	<u>175 (lbs) x 63 (BTU/lb)</u> 3.412 x 3 (hrs)	=	1077 Watts
Safety Factor:	1077 x 20%	=	215 Watts
Total wattage required for melting	:		1292 Watts

Formula B : Wattage losses at operating temperature

3 ft ² x 70 <u>Watts</u> Ft ²	=	210 Watts
11 ft ² x 55 <u>Watts</u> Ft ²	=	605 Watts
(210 + 605) x 20%	=	163 Watts
		978 Watts
		1277 Watts
	-	1292 Watts
		3547 Watts
	3 ft ² x 70 <u>Watts</u> Ft ² 11 ft ² x 55 <u>Watts</u> Ft ² (210 + 605) x 20%	$3 \text{ ft}^{2} \times 70 \frac{\text{Watts}}{\text{Ft}^{2}} = \frac{11 \text{ ft}^{2} \times 55 \frac{\text{Watts}}{\text{Ft}^{2}} = \frac{11 \text{ ft}^{2} \times 605 \times 20\%}{(210 + 605) \times 20\%} = 1000000000000000000000000000000000000$

www.OEMheaters.com Toll Free: (866) 685-4443 Email: Info@OEMheaters.com